Walk-modularity and community structure in networks
نویسندگان
چکیده
Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically expect to find based on random chance. We present a natural generalization of modularity based on the difference between the actual and expected number of walks within clusters, which we call walk-modularity. Walk-modularity can be expressed in matrix form, and community detection can be performed by finding leading eigenvectors of the walk-modularity matrix. We demonstrate community detection on both synthetic and real-world networks and find that walk-modularity maximization returns significantly improved results compared to traditional modularity maximization.
منابع مشابه
Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملEfficient modularity optimization by self-avoiding walk
Different kinds of random walks have showed to be useful in the study of the structural properties of complex networks. Among them, the restricted dynamics of the self-avoiding random walk (SAW), which reaches only unvisited vertices in the same walk, has been succesfully used in network exploration. SAWs are therefore a promising tool to investigate community structures in networks. Despite it...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملCommunity Detection in Complex Networks Using Immune Clone Selection Algorithm
Based on optimization modularity, many algorithms were proposed to detect community structure in complex networks. As a optimization measure, modularity has resolution limits problems. A new measure named by modularity density was introduced, which can overcome the resolution limits drawbacks of modularity function. In this paper, we propose a immune clone selection algorithm for detecting comm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Network Science
دوره 3 شماره
صفحات -
تاریخ انتشار 2015